Generation of Rat Pancreas in Mouse by Interspecific Blastocyst Injection of Pluripotent Stem Cells

نویسندگان

  • Toshihiro Kobayashi
  • Tomoyuki Yamaguchi
  • Sanae Hamanaka
  • Megumi Kato-Itoh
  • Yuji Yamazaki
  • Makoto Ibata
  • Hideyuki Sato
  • Youn-Su Lee
  • Jo-ichi Usui
  • A. S. Knisely
  • Masumi Hirabayashi
  • Hiromitsu Nakauchi
چکیده

The complexity of organogenesis hinders in vitro generation of organs derived from a patient's pluripotent stem cells (PSCs), an ultimate goal of regenerative medicine. Mouse wild-type PSCs injected into Pdx1(-/-) (pancreatogenesis-disabled) mouse blastocysts developmentally compensated vacancy of the pancreatic "developmental niche," generating almost entirely PSC-derived pancreas. To examine the potential for xenogenic approaches in blastocyst complementation, we injected mouse or rat PSCs into rat or mouse blastocysts, respectively, generating interspecific chimeras and thus confirming that PSCs can contribute to xenogenic development between mouse and rat. The development of these mouse/rat chimeras was primarily influenced by host blastocyst and/or foster mother, evident by body size and species-specific organogenesis. We further injected rat wild-type PSCs into Pdx1(-/-) mouse blastocysts, generating normally functioning rat pancreas in Pdx1(-/-) mice. These data constitute proof of principle for interspecific blastocyst complementation and for generation in vivo of organs derived from donor PSCs using a xenogenic environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera

Naked mole rats (NMRs) are exceptionally long-lived, cancer-resistant rodents. Identifying the defining characteristics of these traits may shed light on aging and cancer mechanisms. Here, we report the generation of induced pluripotent stem cells (iPSCs) from NMR fibroblasts and their contribution to mouse-NMR chimeric embryos. Efficient reprogramming could be observed under N2B27+2i condition...

متن کامل

Viable Rat-Mouse Chimeras: Where Do We Go from Here?

In a tour-de-force study, Kobayashi et al. (2010) describe the first viable rat-mouse chimeras and demonstrate that rat induced pluripotent stem (iPS) cells can rescue organ deficiency in mice. Rat iPS cells formed a fully functional pancreas when injected into mouse blastocysts lacking the Pdx1 gene required for pancreas formation.

متن کامل

Establishment, Culture and Freezing of Human and Mouse Embryonic Stem Cells: a Protocol Guide

Studies of the biology of human embryonic stem cells (hES cells) have developed rapidly over the past nine years since the first reports of their derivation. They clearly offer enormous potential, not only for regenerative medicine, but also for drug discovery and toxicology, human developmental biology and cancer research. Realizing these potentials a better understanding of the fundamental as...

متن کامل

CFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells

The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2010